

Mark Cheung, CSIRO Space & Astronomy

3D MHD of Flares & Eruptions

RoCMI 2023, Svalbard

Murchison

Geraldton

>0

New Norcia

the part of the

New NorciaPerth

Australia Telescope Compact Array

Narrabri 🔘 Coonabarabran 🔘

Parkes 🔵

Sydney
Tidbinbilla

Invarrimanha Ilgari Bundara*, the CSIRO Murchison Radio-astronomy Observatory *sharing the sky and stars

Parkes Observing Schedule

This is version 2 of the current schedule

April Semester 2023

Date	Day	Local Time (AEST) / Proposal	LST	Observers	Friend	Receive
01 Apr	Sat	00:00 - 12:00 Director's Time 12:00 - 13:00 P1189 A pulsar-based solar space weather monitoring network(Zic) 13:00 - 24:00 P456 A millisecond pulsar timing array(Hobbs)	12:27 - 00:29 00:29 - 01:29 01:29 - 12:31	Zic Hobbs	<u>ops-team</u> <u>ops-team</u>	UWL UWL
02 Apr	Sun	00:00 - 12:00 P456 A millisecond pulsar timing array(Hobbs) 12:00 - 13:00 P1189 A pulsar-based solar space weather monitoring network(Zic) 13:00 - 21:00 P456 A millisecond pulsar timing array(Hobbs) 21:00 - 24:00 Director's Time	12:31 - 00:33 00:33 - 01:33 01:33 - 09:35 09:35 - 12:35	Hobbs Zic Hobbs	<u>ops-team</u> <u>ops-team</u> <u>ops-team</u>	UWL UWL UWL
03 Apr	Mon	 00:00 - 02:00 P1050 Initial Follow-up of New Pulsar Discoveries from Re-processing of the HTRU-S LowLat Galactic Plane Survey(Sengar) 02:00 - 03:00 P885 Understanding the Remarkable Behaviour of Radio Magnetars(Camilo) 03:00 - 05:00 P1101 Monitoring FRB190520 with the Parkes Ultra-Wideband Low receiver(Dai) 05:00 - 08:30 P1192 Timing the First Seven Pulsars Discovered in Terzan 1(DeCesar) 08:30 - 10:00 Director's Time 10:00 - 11:00 P1189 A pulsar-based solar space weather monitoring network(Zic) 11:00 - 13:30 P1183 Studying the radiation spectrum and polarization of a new energetic FRB 20220529(Zhang) 13:30 - 24:00 P574 Young Pulsar Timing: Probing the Physics of Pulsars and Neutron Stars(Lower) 	12:35 - 14:36 14:36 - 15:36 15:36 - 17:36 17:36 - 21:07 21:07 - 22:37 22:37 - 23:37 23:37 - 02:07 02:07 - 12:39	Sengar Camilo Dai DeCesar Zic Zhang Lower	ops-team ops-team ops-team ops-team ops-team ops-team ops-team	UWL UWL UWL UWL UWL UWL
04 Apr	Tue	 00:00 - 10:30 P574 Young Pulsar Timing: Probing the Physics of Pulsars and Neutron Stars(Lower) 10:30 - 12:30 P595 PULSE@Parkes (Pulsar Student Exploration online at Parkes)(Hobbs) 12:30 - 13:30 P1189 A pulsar-based solar space weather monitoring network(Zic) 13:30 - 14:30 Director's Time 14:30 - 18:00 P455 Timing and geodetic precession in the double pulsar(Burgay) 18:00 - 20:00 P1054 Follow-up of pulsar discoveries from MeerKAT searches(Burgay) 20:00 - 24:00 P1032 Timing southern binary pulsar systems(Venkatraman Krishnan) 	12:39 - 23:11 23:11 - 01:11 01:11 - 02:11 02:11 - 03:12 03:12 - 06:42 06:42 - 08:42 08:42 - 12:43	Lower Hobbs Zic Burgay Burgay Venkatraman Krishnan	ops-team ops-team ops-team ops-team ops-team ops-team	UWL UWL UWL UWL UWL UWL
05 Apr	Wed	00:00 - 02:00 P1032 Timing southern binary pulsar systems(Venkatraman Krishnan) 02:00 - 04:00 P1054 Follow-up of pulsar discoveries from MeerKAT searches(Burgay) 04:00 - 06:00 P1194 Identifying millisecond pulsars among the candidates selected from Fermi LAT(Lu) 06:00 - 08:00 P1054 Follow-up of pulsar discoveries from MeerKAT searches(Burgay) 08:00 - 16:00 Maintenance 16:00 - 24:00 PX500 FAST: category 1 purchased time(Li)	12:43 - 14:43 14:43 - 16:44 16:44 - 18:44 18:44 - 20:44 20:44 - 04:46 04:46 - 12:47	Venkatraman Krishnan Burgay Lu Burgay Li	<u>ops-team</u> <u>ops-team</u> <u>ops-team</u> ops-team	UWL UWL UWL UWL

Please Note: All times in this schedule are in **Australian Eastern Standard Time**. Daylight Saving will

"What is the state of the art of 3D MHD simulations of flares and eruptions, and how do synthetic observables compare with observations?

Which physical mechanisms are missing and which modelling advances are needed, also given the future availability of highresolution observations from MUSE and other missions?"

27.00 26.00 AR 11726 @ 2013-04-18T21:20:13

EM in log T/K=[5.75,6.05]

EM in log T/K=[6.05,6.35]

EM in log T/K=[6.35,6.65]

EM in log T/K=[6.65,6.95]

28.00

EM in log T/K=[6.95,7.25]

DEM movie of the emergence <u>of AR 11726</u>

29.00

Other panels: EM in various log T bins

Line-of-sight B @2013-04-20T06:55:20

DEM movie of the emergence of AR 11726

Greyscale: B_{los} from HMI Green: 6MK EM Yellow/Red: 10 MK EM

26.00 27.00 AR 12673 @ 2017-09-04T00:00:11

EM in log T/K=[5.65,5.95]

EM in log T/K=[5.95,6.25]

Log Emission Measure [cm^{*}]

28.00

29.00

<u>DEM movie</u> of the emergence <u>of AR 12673</u>

Other panels: EM in various log T bins

EM in log T/K=[6.55,6.85]

EM in log T/K=[6.85,7.15]

26.00 27.00 AR 12158 @ 2014-09-17T19:34:13

EM in log T/K=[5.75,6.05]

EM in log T/K=[6.05,6.35]

EM in log T/K=[6.35,6.65]

28.00 EM in log T/K=[6.65,6.95]

29.00

EM in log T/K=[6.95,7.25]

Line-of-sight B @2014-09-17T19:33:34

Other panels: EM in various log T bins

- Tell-tale signs of chromospheric evaporation
- Loops filled with plasma at 10 MK and above
- Loops cool to lower log T bins
- At time (~20:29 UT) when plasma cools down to log T/K \sim 5.8, coronal condensations in SJI 1330 begin to appear.

26.00 27.00 AR 12158 @ 2014-09-17T19:55:25

EM in log T/K=[5.75,6.05]

EM in log T/K=[6.05,6.35]

EM in log T/K=[6.35,6.65]

Line-of-sight B @2014-09-17T19:54:34

Other panels: EM in various log T bins

- Tell-tale signs of chromospheric evaporation
- Loops filled with plasma at 10 MK and above
- Loops cool to lower log T bins
- At time (~20:29 UT) when plasma cools down to log T/K \sim 5.8, coronal condensations in SJI 1330 begin to appear.

26.00 27.00 AR 12158 @ 2014-09-17T20:29:01

EM in log T/K=[5.75,6.05]

EM in log T/K=[6.05,6.35]

EM in log T/K=[6.35,6.65]

Other panels: EM in various log T bins

- Tell-tale signs of chromospheric evaporation
- Loops filled with plasma at 10 MK and above
- Loops cool to lower log T bins
- At time (~20:29 UT) when plasma cools down to log T/K ~ 5.8, coronal condensations in SJI 1330 begin to appear.

AR 12158 @ 2014-09-17T20:29:01

EM in log T/K=[5.75, 6.05]

₹.

AR 12158 @ 2014-09-17T20:26:37

EM in log T/K=[5.75,6.05]

IRIS SJI 1330: Coronal condensations appear at about same time (~20:29 UT) as when AIA sees sub-MK plasma.

Are there nanojets?

26.00 27.00 AR 12017 @ 2014-03-28T15:20:13

EM in log T/K=[5.75,6.05]

EM in log T/K=[6.05,6.35]

EM in log T/K=[6.35,6.65]

Line-of-sight B @2014-03-28T15:19:16

NOAA AR 12017: one X-class ("Best Observed X-flare"), 3 M-class, and about two dozen C-class flares

Sunquake: Judge et al. (2014) **Filament Eruption** before X-flare: Kleint et al. (2015) IRIS Fe XXI FUV spectra: Young et al. (2015)Chromospheric Evaporation: Li et al. (2015)

A comprehensive three-dimensional radiative magnetohydrodynamic simulation of a solar flare

published November 26th 2018 in Nature Astronomy https://doi.org/10.1038/s41550-018-0629-3

M. C. M. Cheung, M. Rempel, G. Chintzoglou, F. Chen, P. Testa, J. Martínez-Sykora, A. Sainz Dalda, M. L. DeRosa, A. Malanushenko, V. Hansteen, B. De Pontieu, M. Carlsson, B. Gudiksen & S. W. McIntosh

Yokoyama & Shibata (1998) •2D MHD model of flare reconnection.

•The efficient transport of energy released by reconnection is modeled as thermal conduction carried by electrons streaming along field lines.

•Energy dumped into the chromosphere leads to dense upflows (humps): "chromospheric evaporation"

•The model predicts density enhancement in the termination region ("blob").

	7.4
	7.2
g T/K	6.9
veighted Lo	6.7
M-ME	6.5
	6.2
	6.0

Chromospheric evaporation (hump)

Downward mass pumping from reconnection outflow (blob)

2012-07-19T04:16

Dashed contours: Total EM =10²⁹ cm⁻⁵ Solid contours: Total EM =10³⁰ cm⁻⁵

Figure 1. Number density Ne (in cm–3), temperature Te (in MK), and vertical velocity vy (in 100 km s–1) at t = 40, 80, and 120 s. In the temperature views (middle row), white and yellow contours near the flare loop footpoints show the heating due to fast electron energy deposition, with a level of 1% and 10% of the maximum values, respectively. In the same panels, the black contour identifies the instantaneous region of fast electron energization.

$t = 0.0 \mathrm{~s}$

Ruan, Xia & Keppens (2020)

Synthetic GOES X-ray Light Curves

C4 flare if measured by detectors on GOES 15. The free magnetic energy (actual minus potential field) dropped by ~5x10³⁰ erg (~10%) over 5 minutes.

Synthetic Doppler Maps: scaled by DEM

Doppler V @ T = 1.0 MK Doppler V @ T = 10.0 MK Doppler V @ T = 25.1 MK

Using only thermal bremsstrahlung (+lines), the model yields power law-like shapes for the X-ray spectrum.

The multi-thermal nature of the magnetic structure gives rise to the apparent non-thermal behavior.

Above-the-loop-top harder X-ray sources (> 25 keV) are located above softer loop sources.

Hard x-rays $\geq 25 \text{ keV}$ 6 \leq Soft x-rays $\leq 12 \text{ keV}$

Xiaocan Li et al 2017 ApJ 843 21: 2D PIC simulations (Maxwell + relativistic Vlasov equations) of particle acceleration (mass ratios m_p/m_e up to 100).

- runs with lower mass ratios"
- component relative to its thermal component. "

Xiaocan Li et al 2019 ApJ 879 5: extended to mass ratio = 400

 Robust w.r.t. mass ratio: "reconnection rate, magnetic energy conversion, ion internal energy gain, plasma energization processes, ion energy spectra"

• Sensitive to mass ratio: "electrons gain more energy (internal or kinetic) in

•"the accelerated electron distribution is actually a superposition of a series of different distributions, but each distribution only has a small non-thermal

23

Xiaocan Li et al 2017 ApJ 843 21

CHEN ET AL.

Chen et al. (under review)

- MURaM-data-driven, MURaM simulation of a flare.
- Sampled electric fields at the photosphere to drive an initial potential field distribution.
- Quantitative differences between different numerical setups (e.g. grid spacing).

THE ASTROPHYSICAL JOURNAL, 926:53 (32pp), 2022 February 10

© 2022. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). II. Flares and Eruptions

Mark C. M. Cheung¹, Juan Martínez-Sykora^{1,2,3,4}, Paola Testa⁵, Bart De Pontieu^{1,3,4}, Georgios Chintzoglou^{1,6}, Matthias Rempel⁷, Vanessa Polito^{1,2}, Graham S. Kerr^{8,9}, Katharine K. Reeves⁵, Lyndsay Fletcher^{3,10}, Meng Jin^{1,11}, Daniel Nóbrega-Siverio^{3,4,12,13}, Sanja Danilovic¹⁴, Patrick Antolin¹⁵, Joel Allred⁹, Viggo Hansteen^{1,2,3,4}, Ignacio Ugarte-Urra¹⁶, Edward DeLuca⁵, Dana Longcope¹⁷, Shinsuke Takasao¹⁸, Marc L. DeRosa¹, Paul Boerner¹, Sarah Jaeggli¹⁹, Nariaki V. Nitta¹, Adrian Daw⁹, Mats Carlsson^{3,4}, and Leon Golub⁵, The *MUSE* team

¹ Lockheed Martin Solar & Astrophysics Laboratory, 3251 Hanover St, Palo Alto, CA 94304, USA; cheung@lmsal.com ² Bay Area Environmental Research Institute, NASA Research Park, Moffett Field, CA 94035, USA ³Rosseland Centre for Solar Physics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo, Norway ⁴ Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo, Norway ⁵ Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02193, USA ⁶ University Corporation for Atmospheric Research, Boulder, CO 80307-3000, USA High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307, USA ⁸ Department of Physics, The Catholic University of America, 620 Michigan Avenue NW, Washington DC 20064, USA ⁹NASA Goddard Space Flight Center, Heliophysics Sciences Division, Code 671, 8800 Greenbelt Road, Greenbelt, MD 20771, USA ¹⁰ SUPA School of Physics & Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK ¹¹ SETI Institute, 189 North Bernardo Avenue, Suite 200, Mountain View, CA 94043, USA ¹² Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain ¹³ Universidad de La Laguna, Dept. Astrofísica, E-38206 La Laguna, Tenerife, Spain ¹⁴ Institute for Solar Physics, Department of Astronomy, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm, Sweden ¹⁵ Department of Mathematics, Physics & Electrical Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK ¹⁶ Space Science Division, Naval Research Laboratory, Washington, DC 20375, USA ¹⁷ Department of Physics, Montana State University, Bozeman, MT 59717, USA ¹⁸ Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan National Solar Observatory, 22 Ohi'a Ku, Makawao, HI 96768, USA Received 2021 August 20; revised 2021 December 6; accepted 2021 December 9; published 2022 February 11

MUSE WILL CONSTRAIN INITIATION MECHANISMS OF FLARES AND CMES

MUSE will provide spectroscopic signatures of triggers of flares and eruptions, which are often missed by single-slit instruments. Such observations will test existing models of solar eruptions which invoke different physical mechanisms. **Bidirectional flows** show reconnection trigger.

Cheung et al., 2022

MUSE will constrain initial plasma conditions of flux-rope-driven CME models

Fe XV (~ 2 MK) & Fe XXI (~10 MKL) moment maps of flare + nascent CME

MUSE: the Multi-Slit Solar Explorer

MUSE will constrain initial plasma conditions of flux-rope-driven CME models

Fe XV (~ 2 MK) & Fe XXI (~10 MKL) moment maps of flare + nascent CME

MUSE: the Multi-Slit Solar Explorer

100

0

MUSE will constrain initial plasma conditions of flux-rope-driven CME models

Intensity, Doppler ullet& line width maps of the source regions of CMEs constrain initial conditions of models (e.g. Jin et al. 2017 EEGGL module@ NASA **CCMC** can have new constraints).

MUSE will provide constraints on models of the plasmoid instability

De Pontieu et al., 2022; Cheung et al., 2022

High-cadence, high resolution imaging spectroscopy by MUSE will capture the evolution of plasmoids at multiple scales (if and when they exist), testing the prediction of fast reconnection models mediated by the plasmoid instability.

20"

& particle acceleration

Models of reconnection outflows in flare current sheets (Takasao et al. 2015; Kong et al. 2019) predict multiple interacting fast mode shocks, which are candidate sites for particle acceleration.

5.0

5.5

log10 T/K

6.0

4.5

4.0

1/1JJSE

6.5 7.0 7.5

MUSE will test models of fast magnetic reconnection

32

Open flux emanating from the edges of active regions is a source of the nascent solar wind. MUSE rasters will track how these regions evolves, and investigate the presence of waves and intermittency.

e XV 284 A (2 MK) Intensity @ t=-20 sec

Core dimmings

Fe XV 284 Å (2 MK) Doppler @ t=-20 sec

Core dimmings

135 arcsec

•High cadence MUSE multisite rasters (FOV covering up to 170"x170") will reveal plasma properties in the core dimming regions, which are believed to be the footpoints of eruptive flux ropes.

Left: Fe XV (284 Å) intensity and Doppler velocity maps of simulated eruptive flare showing blueshifted flows in the core dimming region. (simulation from Cheung et al. 2022; Rempel, Chintzoglou & Cheung, 2023)

Discussion

What is the state of the art of 3D MHD simulations of flares and eruptions, and how do synthetic observables compare with observations?

- Increasingly realistic single-fluid MHD simulations reproducing the lifecycle of solar flares / • eruptions.
- Models parameterizing fast electron heating produces hard x-ray sources at flare loop tops and footpoints (Ruan, Xia & Keppens 2020). The cause of the EM enhancement is still predominantly due to thermal conduction.
- Poor knowledge of 3D structure of the coronal field (Pariat's talk).
- Are non-thermal electrons energetically important for the energy budget of solar flares? •

the future availability of high-resolution observations from MUSE and other missions?

- Self-consistent particle acceleration in 3D flare models
- NLTE ion populations (c.f. Imada's talk) in 3D models EUVST
- Loop evolution in 1D models with NLTE physics \bullet
- Multi-strand structuring & turbulence (other than Emslie & Bian 2018) MUSE

Which physical mechanisms are missing and which modelling advances are needed, also given

