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Field components; full-FOV, full resolution
Hinode/SOT-SP scan

Granulation scale;
set by surface dynamics

Supergranulation; Hinode/SOT-SP scan (full-FOV, at full-resolution) of AR13153 on 2022/12/0F+at~11 UT
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Plage; no longer connected Spots; rooted > 20 Mm
to global field? below near surface shear layer?



Dynamics; surface and
onvective flows

e Surface flux transport models

e Differential rotation

 Meridional circulation

e Diffusion

* Near surface shear layer (20 Mm?

What needs to be set for flux
“box in the Sun”
emergence Simulations?

* Field strength
* Depth, and height, of simulation
* Shape/topology
e Twist
 Associated velocities
* Pre-existing ambient field

e QS

* Plage

e AR...

e ...Or none?




Cheung et al. 2010 ApdJ 720, Rempel &
Cheung 2014, ApdJ 785.

Inserted a torus, at speed, with and
without twist, without and with a torus

aligned flow.

Spectacularly successful! But...

Problems with formation of penumbrae.

(Now resolved?)

Flow leads to significant asymmetry
between “leading” and “following” spot

Decay through turbulent diffusion

ARs and spots
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ABSTRACT

We present numerical simulations of active region scale flux emergence covering a time span of up to 6 days. Flux
emergence is driven by a bottom boundary condition that advects a semi-torus of magnetic field with 1.7 x 10** Mx
flux into the computational domain. The simulations show that, even in the absence of twist, the magnetic flux is
able the rise through the upper 15.5 Mm of the convection zone and emerge into the photosphere to form spots.
We find that spot formation is sensitive to the persistence of upflows at the bottom boundary footpoints, i.e., a
continuing upflow would prevent spot formation. In addition, the presence of a torus-aligned flow (such flow into
the retrograde direction is expected from angular momentum conservation during the rise of flux ropes through
the convection zone) leads to a significant asymmetry between the pair of spots, with the spot corresponding
to the leading spot on the Sun being more axisymmetric and coherent, but also forming with a delay relative to the
following spot. The spot formation phase transitions directly into a decay phase. Subsurface flows fragment the
magnetic field and lead to intrusions of almost field free plasma underneath the photosphere. When such intrusions
reach photospheric layers, the spot fragments. The timescale for spot decay is comparable to the longest convective
timescales present in the simulation domain. We find that the dispersal of flux from a simulated spot in the first two
days of the decay phase is consistent with self-similar decay by turbulent diffusion.

Key words: convection — magnetohydrodynamics (MHD) — radiative transfer — sunspots

Online-only material: animations, color figures

doi: 10.1088/0004-637X/785/2/90
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Fig. 3.— Image of horizontal (green) and vertical (blue and red) magnetic field. Magnetic field first emerges

horizontally over granules followed by the appearance of vertical field at the granule edges. The orizontal
field is quickly swept into the intergranular lanes.
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Figure 2. Continuum intensity image with horizontal magnetic field vectors superimposed. The images are clipped at 2.3 > I/(I) > 0.5. The actual range is

[0.2, 2.5]. In the initial emergence the granules are elongated transverse to the horizontal field. Thereafter the granules appear elongated along the magnetic field
direction.
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EMERGENCE OF MAGNETIC FLLUX GENERATED IN A SOLAR CONVECTIVE DYNAMO.

Figure 5. Continuum intensity images for the same time period as in Figure 4. The intensity is normalized by the mean intensity

“Correct” asymmetries set by properties of injected flux/flow
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ABSTRACT

We present a comprehensive radiative magnetohydrodynamic simulation of the quiet Sun and large
solar active regions. The 197 Mm wide simulation domain spans from 18 (10) Mm beneath the photo-
sphere to 113 Mm in the solar corona. Radiative transfer assuming local thermal equilibrium, optically-
thin radiative losses, and anisotropic conduction transport provide the necessary realism for synthe-
sizing observables to compare with remote sensing observations of the photosphere and corona. This
model self-consistently reproduces observed features of the quiet Sun, emerging and developed active
regions, and solar flares up to M class. Here, we report an overview of the first results. The sur-
face magnetoconvection yields an upward Poynting flux that is dissipated in the corona and heats the
plasma to over one million K. The quiescent corona also presents ubiquitous propagating waves, jets,
and bright points with sizes down to 2 Mm. Magnetic flux bundles emerge into the photosphere and
give rise to strong and complex active regions with over 1022 Mx magnetic flux. The coronal free mag-
netic energy, which is approximately 18% of the total magnetic energy, accumulates to approximately
1033 erg. The coronal magnetic field is clearly non-force-free, as the Lorentz force needs to balance the
pressure force and viscous stress as well as drive magnetic field evolution. The emission measure from
log,o T'=4.5 to log,o T>7 provides a comprehensive view of the active region corona, such as coronal
loops of various lengths and temperatures, mass circulation by evaporation and condensation, and
eruptions from jets to large-scale mass ejections.

...and now all the way into the corona...
Any outstanding problems?



Flux emergence in the Quiet Sun
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Fig. 17 A schematic view of the supergranulation phenomenon as currently constrained by observations. A
1S the scale where the horizontal kinetic energy spectral density is maximum. d is the diameter of “coherent
structures™ (supergranules). The red and blue patches depict the warm and cold regions of the flow. .LN.B
denotes the internetwork magnetic field (the dichotomy between network and internetwork fields is probably
not quite as clear as indicated in this drawing). The vertical structure and extent of the dynamics remains
one of the main unknowns in this cartoon

Rincon & Rieutord 2018, LRSP 15, 6
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The solar internetwork. III. Unipolar versus bipolar flux appearance
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Magnetofrictional simulation

How much does this
emerging flux
contribute to
chromospheric (and
coronal) heating?

Gosic et al., Apd 2022 925, 188
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ABSTRACT

Ellerman Bomb-like brightenings of the hydrogen Balmer line wings in the quiet Sun (QSEBs) are a signature of the fundamental
process of magnetic reconnection at the smallest observable scale in the solar lower atmosphere. We analyze high spatial resolution
observations (0! 1) obtained with the Swedish 1-m Solar Telescope to explore signatures of QSEBs in the HS line. We find that QSEBs
are ubiquitous and uniformly distributed throughout the quiet Sun, predominantly occurring in intergranular lanes. We find up to 120
QSEBs in the FOV for a single moment in time; this is more than an order of magnitude higher than the number of QSEBs found in
earlier Ha observations. This suggests that about half a million QSEBs could be present in the lower solar atmosphere at any given
time. The QSEB brightening found in the Hp line wings also persist in the line core with a temporal delay and spatial offset towards
the nearest solar limb. Our results suggest that QSEBs emanate through magnetic reconnection along vertically extended current
sheets in the solar lower atmosphere. The apparent omnipresence of small-scale magnetic reconnection may play an important role in
the energy balance of the solar chromosphere.

Key words. Sun: activity — Sun: atmosphere — Sun: magnetic fields

Quiet Sun EBs!

*Smaller in size and weaker enhancement of the Ha wings
than AR counterparts.

 Estimate that about half a million QSEBs could be present
in the lower solar atmosphere at any given time.

* Thus indication of omnipresent magnetic reconnection in
the (lower) Quiet Sun chromosphere.

* QSEBs appear everywhere in QS, but more frequently
near network where they are bigger, longer lived, and
brighter.

Joshi et al. 2020, A&A 641, L5, Joshi & Rouppe van
der Voort 2022, A&A 2022, 664, 72.
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Fig. 4. Temporal evolution of a QSEB. Time is progressing along the rows of HB images from left to right, Doppler offset is varying along the
columns from line core at the top to far wing in the bottom. The rightmost column shows the evolution of the QSEB Hpg line profiles in red (the
location of the line profile is marked with the red plus sign in the images), the black line is a reference profile averaged over the presented FOV.
The vertical dotted line marks the Doppler offset in the corresponding row. The Hp profile is selected from the location of maximum intensity at
that Doppler offset within the area of the QSEB. The cyan plus signs mark the centre of the FOV. Images in a particular row are displayed on the
same intensity scale. The dotted rectangle on the central image shows the area used to create the space-time map displayed in Fig. 5(b).



.but no (hot much) heating
iIn the chromosphere and above?
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Figure 2. Temperature spatio-temporal map from the IRIS® inversions at log,, 7soo =—5.8. The white boxes indicate locations and times when
the emerging IN bipoles were under the IRIS slit.

Few specific events identified, but leaves
open the possibility of contribution to the
general “background heating” of the
chromosphere.
Gosic, De Pontieu, Sainz Dalda, ApJ 2022 925, 188
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Simulated QS/network

a bigger box: 72 X 72 X 60 Mm?
depth 8.5 Mm below, height 52 Mm above
photosphere

horizontal resolution Ax = 100 km
unsigned |B,| = 30 G

movie roughly 40 minutes, 500 s cadence

some flux emergence events are visible
synthetic IRIS Mg Il k3 and 283.2 nm
photosphere emission...

...as well as Ca Il 854.2 nm
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shows emerging/expanding flux
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EUV Fe IX 17.11 nm Intensities, velocities, widths
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“Typical” Mg Il k Spectra in a region of “typical” Quiet Sun
IRIS raster 2014-02-25 18:59 UT, with co-temporal HMI magnetogram

102 _100101 102 025 050 075 100 125 150 175 200
HMI magnetogram 2014-02-25 19:10:12 [Gauss] Intensity [nW/m?/sr/Hz] 0 2014-02-25T18:59:47.220
. | — NW
s . P
150" ‘ - 150
| : 2 ' 175 - — IN
125 150 4
b,
" : \ B A : ~
100" X | N - 100 ;E 125
o -~ ) ' 7
(Y, v ~
E
=, g 5, = |
> ' = B i 00
5 v 5 z
o o )
7 7 z 0.75
50 N L 50 e 7
3 0.50 A
25
0.25 -
0" 4
» )
1 |l “ ‘l i - - - s T T T T T T T
-150" -100" 50" -160 -140 -120 -100 -80 -60 -40 279.56 279.58 279.60 279.62 279.64 279.66 279.68 279.70
Solar X [arcsec] Solar X [arcsec] Wavelength [A]

Mg Il k 2796

025 050 075 100 125 150 175 200
Intensity [nW/m?/sr/Hz]

150

125

100

Solar Y [arcsec]
o

27955 27960 279.65 279.70 279.75 279.80 279.85 279.90

Wavelength [A]
Mg Il k 2796

Line core FWHM is > 0.05 nm (53 km/s) with k2 peak intensities of order 1 nW/m?2/sr/Hz

k3 is fairly deep of order 1/2 intensity of k2 peaks
There is some asymmetry; the k2v peak is some 30% brighter than k2r

Network is 2x brighter than “darkest” QS, clear correlation between photospheric fields and Mg |l peak

brightness
What is magnetic topology in the chromosphere here?

What is the magnetic field strength in the photosphere? “Typical” average field strength ( \BZ\ Y ~ 60 Gauss

(not measured here using HMI data)
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Comparison with “typical” quiet Sun model

—102

0 —100610
B, [Gauss] at z

N1

102
= 0.14 Mm

Ty N T BT
ZA, R ?'\;f'{ “*4..‘_-‘\
‘_.")&J- P et '
~c : \
W g C
: % L .~
T P L £
' SR A e S
¢ L(;}w : b ' ~
; A Fa < ‘s >
' }*-'):;' | ‘n
), S MY N LN
“?&\‘Y = Q ;
\- . i“,- I} ! 1N s k/ ¥
N J ’ 1728¢ o e = '\\&
m {.._j’:' . { 3 LT gl 2NN
- T.‘ o\ «
0 10 20 60 70

1 2

3 4
(Intensity nW/m?/sr/Hz)Y=%3% snap = 70 ,

70 TR '
60 —_—
N
L
50 0
S~
§=
40 §
-
30 ~
+
C
20 ()]
el
<
10 .
N
. .
30

Simulation time 04:17:30

L | B |
1 2 3 A
Intensity [nNW/m?/sr/Hz] at

X = 32.00 Mm

1.50 A

1.25 A

1.00 A

0.75 1

0.50 1

e ...maybe not “kind of OK” after all..
* Profiles are too intense, asymmetry is with stronger k2r than k2v,

* And profiles too narrow, 0.027 nm (30 km/s) vs 0.05 nm
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* Not enough dynamics in upper
chromosphere?

 Lack of opacity?

 Simulated field too weak?
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For Mg Il too? Ax = 100 km vs Ax = 50 km
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Model with emergence of flux sheet.

e /2 X (2 X 60 Mm box

* AX,y = 100 km horizontal

» Az variable with 20 km in photosphere and
chromosphere, larger in convection zone and
corona

* Horizontal field of 100 G initial up to
photosphere; nearly 0 G in corona

* |nitial flux injection in whole domain

By = 200 Gauss for 95 minutes

« Then Flux sheet with By = 1000 Gauss or 70

minutes followed by B, = 2000 Gauss for 150

minutes
- Afterward B, = 300 Gauss injected continually

at lower boundary
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EUV Fe IX 17.11 nm Intensities, velocities, widths
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Discussion and Conclusions

AR flux emergence informs us of the global dynamo and the state of the convection zone,

while network and internetwork flux emergence inform us of the layers above the near
surface shear layer.

Can we separate global fields from local fields when setting up simulations? The ambient
coronal field plays an important role, how do we take this into account in limited size “box
in the Sun” models?

...Is continual QS flux emergence energising the chromosphere and/or lifting cool material
to significant heights®?

Alternately, are there other physical effects that need to be taken into account, such as
lon-neutral effects, or can we trust that higher resolution models will save the day?



Formation of the Mg Il k line

see Carlsson, Leenaarts, De Pontieu, “What Do IRIS Observations of Mg
Il k Tell Us about the Solar Plage Chromosphere?”, ApJL 809 L30

e Intensity of the line [, & S(z, = 1); use of Eddington-
Barbier

* Line intensity determined by temperature of chromosphere,
but also by how close source function S is to B; hence the

opacity k., (n, ...)
* High density/intensity if corona is hot and TR “low” or
“deep”
 ...which also will lead to “single peaked” profiles

* Line width dependent on
* \elocity structure or “turbulence”

To achieve high intensity we need high S => hot

» Opacity broadening - how far out in v from line cé terB Tt
chromosphere at high opacity/density.
Single peaked profiles need high S at k3 => high

before temperature begins to fall to k1?
opacity/density at “top” of chromosphere

Wide lines need extended dense chromosphere N E—




