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Long-standing open questions qFGlasgowy

 why does flare energy release start? What does the onset look like?
e How and where is stored magnetic energy converted into other forms?
* how is that energy transported and dissipated in the atmosphere?

Answering these questions requires multi-wavelength observations and modelling, of
the kind we have already seen discussed.

This is a selective discussion, focussing on flare early & impulsive phase, and biased
towards problems that could be tackled by MUSE.
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Flare cartoon 1% of Glasgow
}1/ * Flare results from a global convulsion of the field,
Reconnection facilitated by reconnection — how is this initiated?
Slow- region * Energy conversion can happen not just in the
mode MHD turbulence reconnection region, but also in turbulence,

fast-mode collapsing field, field-aligned currents — what is
shock the participation of the whole magnetised

. volume?
Contracting loops oiume

and radiated by the chromosphere — how can we
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Onset: Hot early onsets

* "Hot Early Onsets’ (Hudson+21) are an apparently ubiquitous flare pre-cursor
* Heating before the impulsive phase (i.e. before particle acceleration)
« 131 Aimages suggest heating in both loops and footpoints
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1-2 minutes before the impulsive phase, temperature obtained from GOES and RHESSI
jumps to 10-15MK and EM increases.

Also Awasthi & Jain 11, Silva+23 in prep
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Onset: Pre-flare ribbons ) of Glasgow

Faint ribbons can appear in UV/EUV 1-5 minutes before hard X-rays (i.e. electron
acceleration) at/very close to impulsive-phase ribbon locations.
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SimoOes+15, see also Warren & Warshall 01, Battaglia+09, Fletcher+13

What causes these pre-flare ribbons? How are they related to development of the
instability? How do they compare to their flare equivalents in space, time and spectrum?



Onset: Pre-flare line broadening qulasgowy
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Conversion: Global reconnection dynamics

Reconnection in a current sheet (volume!) facilitates release of stored energy, but energy is
stored (e.g. Longcope & Tarr 2012) and may be converted throughout the corona

e.g. shocks in retracting flux tubes (Longcope+09), betatron (Giuliani+05), turbulent outflows
(LaRosa & Moore 96)

So we need the global picture of the reconfiguring field - inflows, dipolarisation, implosion
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Conversion: tracking coronal scales in the

chromosphere

Flare ribbons map the ends of energised (presumed “just reconnected”) field, and probe

coronal reconnection — Jiong’s talk.

IRIS SJI & SG used to examine ribbon sub-structure suggesting, variously, plasmoids (Wyper &
Pontin 21); tearing mode (French+19); turbulence (Chitta & Lazarian 20)
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Energy transport: spectra

i University
2 of Glasgow

e Fast particles, conduction and waves probably all involved in energy transport.
 Might be distinguished spectroscopically from chromospheric and coronal signatures

(Graham'’s talk).

Predicted line broadening for AW excitation
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Energy transport: timing of Glasgow

* Electron-beam transport will lead to ~simultaneous footpoint pairs.
* Conduction/wave energy transport may introduce time-lags
* Very few observations have had the cadence and FOV to examine this

Correloted TRACE UV footpoint positions: 07:01:31 — 07:03:10
2000

2s cadence TRACE UV observations sufficient to
find correlated footpoint pairs, and lag
150 between them (Fletcher 09)

Time lags measured during the impulsive phase
- often too long for electron transport.

TRACE Pixels N=S

50

(Look out also for Simoes et al. in prep, using
0 50 100 150 200 250 .
TRACE Pixels E—W observations at 5and 8 um)



Conclusions: Targets for MUSE qFGlasgowy

MUSE capabilities: imaging & spectroscopy at Fe IX/XV/XIX/XXI, large FOV, high cadence
make it ideal to tackle some of these long-standing questions

Pre-flare evolution:

* |dentify and characterise sources of ‘hot onsets’
* Non-thermal broadening & flows in pre-flare ribbons and coronal sources

Conversion:

e quasi-3D flow (& turbulence?) maps in the region around current sheets, including
dipolarising loops

e fine structure in space and time in flare ribbons

Energy transport:

* spectroscopic signatures at footpoints, comparison with predictions of RADYN-type
modelling

e Timing analysis of footpoint pairs



