New and upcoming instruments for observing the chromosphere and corona from Earth

Jorrit Leenaarts - 2023-02-27 - Longyearbyen

Large parameter space

- $T \in (10^3 \,\mathrm{K} 10^7 \,\mathrm{K})$
- $\Delta t \in (1 \text{ s} 1 \text{ month})$
- $|\mathbf{B}| \in (10 \,\mathrm{G} 5000 \,\mathrm{G})$
- $|\mathbf{v}| = (0 \,\mathrm{km}\,\mathrm{s}^{-1} 300 \,\mathrm{km}\,\mathrm{s}^{-1})$

Long time series from space are great

- hi-res optical from space expensive and unlikely...
- ...but highly desirable: Hinode, SDO

Situation on the ground less rosy

- good ground-based datasets rarely longer than 1 h.
- Multiple- day coordination with space MUSE, EUVST essential

SST hours with r0 > 10. cm (black)

Ground & space as complements

- space: UV, X-rays, ~0.5 arcsec, limited magnetic field measurements
- design ground based instruments to complement space

Ηα

Si IV 140 nm

Better physics through inversion

- non-LTE inversions will be most common tool
- spectropolarimetry is a must
- multiple lines and atoms desirable
- as time-coherent as possible
- Example: SST + ALMA*

	DKIST	GREGOR	GST	SST	EST
fixed-band imagers	VBI	BBI, HiFI+	BFI		
slit spectrographs	ViSP, CRYO- NIRSP	GRIS	FISS	TRIPPEL	
tunable narrowband imagers (Fabry-Perot)	VTF		VIS, NIRIS	CRISP, CHROMIS	3
integral field spectrographs	DL-NIRSP	GRIS		(MiHI), HeSP	4

	DKIST	GREGOR	GST	SST	EST
fixed-band imagers	VI	Sele	\$\$:		
slit spectrographs	ViSP, CRYO- NIRSP	GRIS	FISS	TRIPPEL	
tunable narrowband imagers (Fabry-Perot)	VTF		VIS, NIRIS	CRISP, CHROMIS	3
integral field spectrographs	DL-NIRSP	GRIS		(MiHI), HeSP	4

DKIST/ViSP

De Wijn et al., 2022

Image reconstruction of spectrograph data

Van Noort, 2017

Before

Van Noort, 2017

After

Spectra from the corona: DKIST/Cryo-NIRSP

	Table 1 Targeted Coronal Forbidden Lines					
Ion	$\lambda_{\rm air}$ (nm)	Transition($u \rightarrow \ell$)	$\log T_{\rm eff}$			
Fe XIII	1074.6	$3s^2 \ 3p^2 \ ^3P_{1\to 0}$	6.25			
Fe XIII	1079.8	$3s^2 \ 3p^2 \ ^3P_{2\to 1}$	6.25			
Si X	1430.1	$2s^2 2p {}^2P_{3/2 \rightarrow 1/2}$	6.15			
Si IX	3934.3	$2s^2 2p^2 {}^3P_{1\to 0}$	6.05			

	DKIST	GREGOR	GST	SST	EST
fixed-band imagers	VI	56266	\$\$		
slit spectrographs	Needs	image	recons	structic	M
tunable narrowband imagers (Fabry-Perot)	VTF		VIS, NIRIS	CRISP, CHROMIS	3
integral field spectrographs	DL-NIRSP	GRIS		(MiHI), HeSP	4

- R = ~50.000
- ~1 s per wavelength at SNR = 1000
- Narrow lines: 10 s per profile
- Wide lines: 30-100 s.
- FOV = ~50x50 arcsec
- Active region size: ~120 arcsec
- IRIS: 175 arcsec slit
- MUSE: 170x170 arcsec fast raster
- Larger FOV from ground desirable

SST/CRISP

SST/CRISP2

SST/CRISP2

- 120 arcsec circular FOV
- 500 nm -900 nm
- Start operations mid 2024

SST/CHROMIS

SST/CHROMIS

- 390 nm 500 nm
- Polarimetry in Ca II H&K highly desirable
- FOV matching CRISP2 highly desirable

SST/CHROMIS++

SST/CHROMIS++

- CHROMIS allows 120 arcsec circular FOV
- procure 4.5k x 4.5k cameras
 - 4.7 times larger FOV
- Add polarimetric modulator designed by De Wijn at HAO for permanent polarimetry
- Start operations mid 2024

	DKIST	GREGOR	GST	SST	EST
fixed-band imagers	VI	56266	\$\$:		
slit spectrographs	Needs	image	recons	structic	M
tunable narrowband imagers (Fabry-Perot)	Nee	ds L	arger	- FQV	3
integral field spectrographs	DL-NIRSP	GRIS		(MiHI), HeSP	4

Integral field spectrographs

- Small FOV (~5x5 arcsec), but 2D unlike slit spectrographs!
- Time coherent
- Large spectral range
- Complicated to build, calibrate and operate

DKIST/DLNIRSP Jaeggli et al., 2023

DKIST/DLNIRSP

• 500-1800 nm

DKIST/DLNIRSP

Jaeggli et al., 2023

GREGOR/GRIS

Image slicer mirrors

8	
7	
6	
5	
4	
3	
2	
1	

- 3x6 arcsec FOV
- 8 x 34 pixels
- 1000-2300 nm

GREGOR/GRIS

Fe I 1565 nm

V

SST/MiHI & HeSP

SST/MiHI

Van Noort et al., 2022

SST/MiHI

SST/MiHI

SST/HeSP

- 6x8 arcsec FOV
- 55 x 70 pixels
- 1082.5 1085.4 nm
- Spectropolarimetry
- 4 Custom made InGaAs cameras with 2x1.5k pixels

SST/HeSP

The		子语	王远	王族	书话	The second	我
THE.							
1	1	T					
Contractor, Name and Address of the	TANK AND A DESCRIPTION OF	TIME AND YOR !!	NAMES OF TAXABLE PARTY.	the second se	Statistics - Statistics - Statistics	Contraction of the Contract of	Constant of the state of the
Contraction of the second		THE PART	STALL PART		4AT	PAR.	J.A.Y

	DKIST	GREGOR	GST	SST	EST
fixed-band imagers	VE	SCLC	\$\$:		
slit spectrographs	Needs	image	recons	structic	M
tunable narrowband imagers (Fabry-Perot)	Nee	ds L	arger	- FQV	3
integral field spectrographs	DL-N Cal	eds ma ibratio	ore wor n, redu	k on action	4

Conclusions

- the Sun is not so bright at the diffraction limit if SNR>1000 is needed.
- You can't have it all, tradeoffs in xyλt coverage are inevitable.
- But special instruments can give you a good part:
 - Reconstructed slit spectrograph data (prototype 2017, production 2025?)
 - Large FOV Fabry-Perot instruments (2024)
 - Microlens-based diffraction-limited imaging spectrographs (prototype 2016, production 2024?)