The current state of wave-based heating mechanisms

Tom Van Doorsselaere

Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven

28 February 2023

This project has received funding from the ERC (grant agreement No 724326)

Conclusions

Current state-of-the-art in wave heating

Can waves heat loops to coronal temperatures?

Conclusions

Heating with Alfvén waves

Matsumoto (2018): 3D incarnation of Alfvén wave heating models (building on Moriyasu et al. 2004, Antolin & Shibata 2010, Van Ballegooijen et al. 2011)

Drive at footpoint with random convective buffeting.

Conclusions

Heating with Alfvén waves

Matsumoto (2018): Alfvén wave packets steepen, reflect & collide, leading to turbulence & heating

- Loop heated to coronal temperature, and density of 10⁸ cm⁻³.
- Similar to nanoflare heating
- \bullet But not perp. density structuring: forward model \rightarrow no loop

Kink heating against radiative losses

Shi et al. (2021):

- Straight density enhanced (contrast = 3, internal density 3e8 cm⁻³)
- temperature uniform loop (1MK)
- 200Mm, 30G
- Footpoint periodic velocity driver (8km/s, P=86s)
- Driving from t = 0s, radiative losses from t = 600s
- Background heating to keep exterior

Kink heating against radiative losses

Tom Van Doorsselaere

Loop heating by waves

28 February 2023

Kink heating against radiative losses

Wave heating

- supports (low density) loop against radiative losses,
- extends cooling time significantly,
- matches observed long cooling times (e.g. Viall & Klimchuk

Conclusions

Conditions for heating with kink waves

De Moortel & Howson (2022):

- started from Shi et al. (2021)
- changed driver frequency: no match with fundamental mode
- changed density to 10⁹ cm⁻³

Tom Van Doorsselaere

Loop heating by waves

28 February 2023 8 / 21

Conclusions

Conditions for heating with kink waves

De Moortel & Howson (2022)

1000

2000

1.8

£ 14

Current state-of-the-art in wave heating

Can waves heat loops to coronal temperatures?

- Yes, due to the formation of small scales in turbulence but:
 - ullet only quiescent loops (with densities $\sim 10^8 \text{cm}^{-3})$
 - only when driven at resonant frequencies
 - leads to stable T or long cooling time (observed!)
- No

Conclusions

Reasons for non-heating

• Energy input too low to compensate radiative losses (Karampelas et al. 2019)

- high amplitude \rightarrow high Doppler shifts (unobserved)
- $\bullet\,$ high amplitude \rightarrow shredding of loop

How to solve?

At least allow comparison with observations!

Conclusions

Doppler shift in prominence

Okamoto et al. (2015): found peculiar Doppler shifts in oscillating prominence Antolin et al. (2015): made model with resonant absorption & turbulence in prominence thread \rightarrow explaining phase shift

Same physics in loop models (Karampelas et al. 2019, RHS)

 \rightarrow prominence observation indirect evidence of existence of turbulent loop models

Conclusions

Observational evidence of turbulent loops

Pascoe et al. (2020):

 $\bullet\,$ Consider evolution of loop "sharpness" $\,\epsilon\,$

- Compare with observations (red)
- Born with Gaussian sharpness ϵ
- Evolved due to transverse motions $\epsilon > .3$
- Predicted dashed line in top panel (right)

Conclusions

Observational differences waves heating models

De Pontieu et al. (2022): prospection for MUSE mission. Can MUSE differentiate between (wave) heating models?

Conclusions

IN LEUVEN

Observational differences waves heating models

De Pontieu et al. (2022): Can MUSE differentiate between (wave) heating models?

Spectral resolution \rightarrow differ between standing and propagating

Tom Van Doorsselaere

15 / 21

Current state-of-the-art in wave heating

Can waves heat loops to coronal temperatures?

- Yes, due to the formation of small scales in turbulence but:
 - ullet only quiescent loops (with densities $\sim 10^8 \text{cm}^{-3})$
 - only when driven at resonant frequencies
 - leads to stable T or long cooling time (observed!)
- No, but:
 - driver not energetic enough
 - only circumstantial observational evidence
 - lower atmosphere missing

Conclusions

Coupling to chromosphere

Van Damme et al. (2020): effect of phase mixing on evaporation from chromosphere

- Drive Alfvén waves (v_z)
- in relaxed loop with $abla_\perp v_{\mathrm{A}}$
- \bullet phase mixing \rightarrow heating \rightarrow evaporation

Tom Van Doorsselaere

28 February 2023 17 / 21

Conclusions

Coupling to chromosphere

Wave heating indeed leads to evaporation

But low energy input \rightarrow low heating \rightarrow "insignificant evaporation"

Tom Van Doorsselaere

28 February 2023

18 / 21

Conclusions

Coupling to chromosphere

Guo et al. (2023, upcoming): Kink wave & turbulence heating, coupling to chromosphere

Conclusions

Coupling to chromosphere

Sustaining loop for longer term? Long term loop evolution?

Forward modelling \leftrightarrow observations (MUSE)

Tom Van Doorsselaere

Loop heating by waves

28 February 2023 20 / 21

Current state-of-the-art in wave heating

Can waves heat loops to coronal temperatures?

- Yes, due to the formation of small scales in turbulence but:
 - ullet only quiescent loops (with densities $\sim 10^8 \text{cm}^{-3})$
 - only when driven at resonant frequencies
 - leads to stable T or long cooling time (observed!)
- No, but:
 - driver not energetic enough
 - only circumstantial observational evidence
 - lower atmosphere missing
- What is needed?
 - Connection with lower atmosphere, in models (hard!) and observations (MUSE!)
 - How to inject energy at rates compatible with radiative losses?
- Wave heating still has potential!
- From 1D \rightarrow 3D in last decade.