Deciphering the Nanojet Phenomenon

RoCMI - Svalbard, 28/02/2023

Patrick Antolin¹, Ramada Sukarmadji¹ P. Pagano^{2,5}, P. Testa³, A. Petralia², J. A. McLaughlin¹, F. Reale^{2,5}

¹Northumbria - UK
²INAF - Palermo, Italy
³Harvard-Smithsonian CFA - US
⁵Università di Palermo, Italy

Northumbria University NEWCASTLE

Science & Technology Facilities Council

How to differentiate observationally both categories of heating mechanisms?

Solar Orbiter / HRI 174 (Fe X) 10⁶ K

Courtesy of NASA visualisation studio

Antolin et al. Nat. Astron. (2021) 2014 Apr 3 14:46:58 (UTC)

Nanojets **Prominence-coronal rain hybrid eruption**

Antolin et al. (2021)

- Intensity bursts ~ nanoflare $\approx 10^{25}$ erg
- Jet-like, transverse to guide field
- Short lived ~20 s
- v (POS, LOS)>100 km/s
- Lengths: 1000 2000 km
- Widths: ~500 km
- Single or clustered occurrence
- Multi-thermal
- Plasmoids for largest
- Uni-directional

Patrick Antolin - Deciphering the Nanojet Phenomenon

Prominence

Nanojets **Blowout jet**

Sukarmadji+ (2022)

IRIS 1,400 Å 19:36:07UT IRIS 1,400 Å 19:36:07UT 60" 60" 50" Distance (arcsec) Distance (arcsec) 40" · 10" 0" 50" 40" 50" 60" 40" 30" 20" 0" 10" Distance (arcsec) Distance (arcsec) Li et al. (2018) Kelvin-Helmholtz instability

Nanojets Loops with coronal rain

Sukarmadji+ (2022)

Nanojets **Other events**

Coronal / chromospheric structures

d AIA 193-Å 18:52:07

b AIA 171-Å 18:52:12

e Hi-C 193-Å 18:52:08

Patrick Antolin - Deciphering the Nanojet Phenomenon

Chitta+ (2022)

Mini-jets in tornadoes

Nanojets Flaring loops

Sukarmadji et al. (in prep.)

- C class flare
- >100 nanojets

-110.0" -100.0" Distance (")

Nanojets **Statistics**

• Small (widths 600 km, lengths: 1500 km), short-lived bursts (~20 s) ejected with velocities of ~150 km/s, in nanoflare energy range

Nanojets **Global response**

Antolin et al. (2021)

- Transverse separation of rain strands
- Spread along & across the loop, numbers increase with time
- Precede formation of coronal strands
- Multi-thermal
- Heating to coronal temperatures (<5 MK)

Nanojets **Global response**

Antolin et al. (2021)

- Formation of coronal strands
- Coronal heating of loop
- Transverse MHD oscillations (see Ramada Sukarmadji's talk)

Discussion What is the nanojet?

Antolin et al. (2021)

- Nanojet = heating + advection of reconnected field lines transverse to the loop
- Different from usual jets: no major field-aligned flow involved
- ➡ signature of small-angle magnetic reconnection

Prominence

Are nanojets a general feature of small-angle magnetic reconnection?

Discussion How common are nanojets and in what scenarios can we find them?

- 1. Loops with coronal rain
- 2. Blowout jets
- 3. Eruptions and flaring

Is the cool material (rain) playing an important role?

- Observational bias?
- Thermal instability can facilitate reconnection (e.g. Sen & Keppens 2022)

Discussion Nanojet number vs Total energy release

- West Limb Case ($\langle T \rangle \sim 10^5$ K): 1 nanojets
- East Limb Case ($\langle T \rangle \sim 10^5$ K): 4 nanojets
- Blowout Jet ($\langle T \rangle \sim 10^{6.5}$ K): 15 nanojets
- Prominence / Coronal Rain structure (<T> ~ 10^{6.7} K): ~ 150 nanojets
- C Class flare: ~ hundreds

Is there a correlation between the number of nanojets with the total energy released?

Drivers of the reconnection Braiding and shear flows

100"

응

Sukarmadji+ (2022)

- 45-60°
- Velocity shear of 294 km s⁻¹
- KHI reported by *Li et al.* 2018
- East and west limb rain events:
 - 5-15°
 - Velocity shear: 147 km s⁻¹ and 68 km s⁻¹
 - Dynamic instabilities?

Kelvin-Helmholtz

Rayleigh-Taylor

RoCMI 2023

Drivers of the reconnection Prominence stability loss & dynamic instabilities

- chromosphere+corona+artificially broadened TR (Lionello+2009)
- resistivity
- Relaxation prior to driving

Patrick Antolin - Deciphering the Nanojet Phenomenon

RoCMI 2023

Numerical simulations of nanojets

Patrick Antolin - Deciphering the Nanojet Phenomenon

Case $v_{max} = 20 \text{ km s}^{-1}$

- Highly localised reconnection event
- High speed jet-like structure perpendicular to field
- Magnetic tension main driver of jet
- field-aligned $flow \sim 20 km/s$
- Local T increase
- Large-scale perpendicular displacement of field lines

Numerical simulations of nanojets

• Nanojets match with small-angle magnetic reconnection

Numerical simulations of nanojets Origin of the reconnection

Sukarmadji et al. (in prep.)

Alfvén wave at the origin of the reconnection?

Sukarmadji et al. (in prep.)

Patrick Antolin - Deciphering the Nanojet Phenomenon

RoCMI 2023

Numerical simulations of nanojets Forward modelling for MUSE

- Nanojet features can be clearly identified at 0.3" and 10 s cadence in the Fe XV 284 line of MUSE
 - Increase in intensity all along strands
 - Transverse separation of strands (in imaging & Doppler)
 - Enhanced non-thermal line broadening at reconnection location

Patrick Antolin - Deciphering the Nanojet Phenomenon

Patrick Antolin - Deciphering the Nanojet Phenomenon

Conclusions

Nanojet properties

- Small (lengths~1500 km), dynamic (>100 km/s), shortlived (~<20 s), multi-thermal, nanoflare energies
- Unidirectional nature (no clear bidirectional jet)
- Global response suggestive of MHD avalanche
- Accompanied by transverse displacement of strands
- Reconnection driver:
 - Linked to prominence eruptions & flares
 - Braiding (incl. roles of Alfvén waves)
 - Dynamic instabilities (KHI, RTI)

3D MHD numerical modelling

• Nanojets: small-angle magnetic reconnection: transverse advection of field lines accelerated by magnetic tension

Effects

- Heating to coronal temperatures
- Correlation between energy release and nanojet numbers?
- Transverse MHD oscillations can be a signature of braiding-induced reconnection -> see talk by Ramada Sukarmadji

Still unknown:

- How much do nanojets contribute to coronal heating?
- How common are nanojets?
 - Solar Orbiter / EUI, DKIST, EUVST, MUSE
- What is the dominant driver for small-angle reconnection?
- What is the role of cool plasma?
- What is the role of waves in reconnection?
- Why unidirectional?

HRIEUV 01/04/2022 UT10:09:15

Patrick Antolin -

