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Modeling solar observations

Young et al. (2015) da Silva Santos et al. (2022)



Gradient-based optimization

source: https://imanahmadianfar.com/codes/ 

https://imanahmadianfar.com/codes/


Deep Learning frameworks

…

AD exploits the chain rule to obtain an fast accurate derivative:

1.- AD vs SD: As accurate as symbolic/manual differentiation but AD can handle 
complex control flow: conditionals, loops, recursion, etc. (not prone to human errors).

2.- AD vs ND: AD is faster than ND (with a higher memory cost), which could be prone 
to rounding/truncation errors.

 Automatic differentiation



What do they offer?

⇒ You can impose any constraint that you want very easily (e.g. B>0):

HARD: SOFT:

**     PyTorch syntax

**

⇒ We can easily choose which parameters should be free:
 
A.requires_grad = True

**

⇒ Computations can be accelerated on the GPU with minimal changes:

A.cuda()



Experiments

- Python + Pytorch for the automatic differentiation (reverse mode by default)

Result: quick prototyping and analysis

Modularity
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WFA model on spectropolarimetric data

Mg I b2 5173 Å (CRISP@SST)

⇒ The polarization of chromospheric lines is usually weak and close to noise level.⇒ We expect the solution of one pixel be consistent with the model in the surroundings.

without spatial coupling



WFA model on spectropolarimetric data

⇒ Penalizing strong spatial gradients if there is not information in the spectra that indicates that.

⇒ Here we do not couple all the pixels in a big matrix but every pixel in a independent way

Mg I b2 5173 Å (CRISP@SST)

de la Cruz Rodríguez et al. (2019), Morosin et al. (2020)

with spatial coupling



Gaussian model on spectroscopic data (IRIS)

⇒ A non-linear problem: fitting many pixels. Again, weak lines are more affected by noise. 

⇒ Strengths: simple parallelization by default as each pixel is treated independently.

O I 1356 Å (2015/05/12@IRIS)



Gaussian model on spectroscopic data (IRIS)

O I 1356 Å (2015/05/12@IRIS)

⇒ We added [spatial regularization] + [width > minimum_value]

⇒ It helps to provide a more coherent map but we should use uncertainty information to trust regions.



ME model + PSF in Hinode Data

with PSFwithout PSF

10 arcsec

Hinode/SP 2007/04/30 (NOAA 10953)

⇒ We can exchange the modules like lego pieces, now including the PSF of the telescope

⇒ The model is more computationally expensive, so the ME can be run on GPUs or written in C++



Differential Emission Measure inversions

⇒ Strengths: You can play with different penalty terms (DEM>0, temporal coherence, etc)

PyTorch DEM
Basis Pursuit DEM

Hannah & Kontar (2012), Plowman et al. (2012), Cheung et al. (2015), Warren et al. (2017), Massa et al. (2023)

⇒ Note: current methods are highly optimized to perform much faster



Implicit Neural Representation

⇒ Goal: Can we find a better way of parametrizing the data than using pixels?

Asensio Ramos & de la Cruz Rodríguez (2015)

⇒ Goal: Can we use a neural network to describe our parameters?

Jarolim et al. (2022)



Pixel-by-pixel

Neural network

Params (10% of nxny)

Mg I b2 5173 Å (CRISP@SST)

⇒ Strengths: Continuous approximation of the parameters in the whole domain

Mesh-free “Physics-informed Neural Networks”

Grid evaluation



Summary and conclusions

- Versatility: you can test different ideas and regularizations

- Accuracy: efficient gradient calculations with a simple interface

- Modularity: It can combine modules written in Numba/Fortran/C++

- Speed: run it in GPUs without almost modification

- WIP and trade-off: many things to explore but promising possibilities

Asensio Ramos & de la Cruz Rodríguez (2015), de la Cruz Rodríguez et al. (2019), Morosin et al. (2020), Jirí Štepán et al. (2022)


